
An algebraic approach to the study of weakly excited states for a condensate in a ring

geometry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 8393

(http://iopscience.iop.org/0305-4470/38/39/007)

Download details:

IP Address: 171.66.16.94

The article was downloaded on 03/06/2010 at 03:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 8393–8408 doi:10.1088/0305-4470/38/39/007

An algebraic approach to the study of weakly excited
states for a condensate in a ring geometry

P Buonsante, R Franco and V Penna

Dipartimento di Fisica and UdR INFM, Politecnico di Torino, C.so Duca degli Abruzzi 24,
I-10129 Torino, Italy

Received 8 June 2005, in final form 27 July 2005
Published 14 September 2005
Online at stacks.iop.org/JPhysA/38/8393

Abstract
We determine the low-energy spectrum and the eigenstates for a two-bosonic
mode nonlinear model by applying the Inönü–Wigner contraction method to the
Hamiltonian algebra. This model is known to well represent a Bose–Einstein
condensate rotating in a thin torus endowed with two angular-momentum modes
as well as a condensate in a double-well potential characterized by two space
modes. We consider such a model in the presence of both an attractive and a
repulsive boson interaction and investigate regimes corresponding to different
values of the inter-mode tunnelling parameter. We show that the results ensuing
from our approach are in many cases extremely satisfactory. To this end, we
compare our results with the ground state obtained both numerically and within
a standard semiclassical approximation based on su(2) coherent states.

PACS numbers: 03.75.Fd, 03.65.Sq, 03.75.Lm

1. Introduction

The dynamics of a bosonic fluid rotating within a thin torus and, particularly, the study of the
properties relevant to its weakly excited states have received recently much attention [1–5] due
to the rich phenomenology that characterizes such a system. For example, the quantization
of fluid circulation is shown [3] to disappear whenever the physical parameters cause the
hybridization of condensate ground state over different angular-momentum (AM) states. A
similar effect is found in the mean-field dynamics of the condensate wavefunction on a circle
[4], where the circulation loses its quantized character when the system is in the soliton regime.
The rotating fluid exhibits low-energy AM quantum states (corresponding to the presence of
plateaus of quantized circulation) that determine the hybridization effect by a suitable tuning
of the model interaction parameters [3]. In the simplest possible case, the model exhibits two
momentum (bosonic) modes associated with two AM states (the ground state and the first
excited state) of the fluid. An almost identical model [6–13] has been studied thoroughly
in the recent years within Bose–Einstein condensates (BEC) physics, where a condensate is
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distributed in two potential wells that exchange bosons via tunnelling effect. The two-well
model H = U

(
n2

0 + n2
1

) − �(n0 − n1)/2 − V0
(
a0a

+
1 + a1a

+
0

)
, where a0, a1 are bosonic space

modes and ni = a+
i ai , displays hybridized states when the well-depth imbalance vanishes

(� = 0).
For both models the energy regime of interest is that corresponding to the ground state

or weakly excited states. In this respect, many authors have tried to develop approximation
schemes able to provide a satisfactory analytical description of the low-energy spectrum and of
its states. The nonlinear character of the model Hamiltonian entails a difficult diagonalization
process unless one resorts to numerical calculations. In this case, the exact form of the
spectrum is obtained quite easily. However, for N-well systems such as condensate arrays
described by the Bose–Hubbard model, Josephson-junction arrays and, in general, N-mode
bosonic systems [14, 15], the exact diagonalization requires a computational effort rapidly
increasing with N. This motivates the interest in developing effective, analytical approximation
methods able to solve the diagonalization problem.

The present work has been inspired by papers [2, 3] where, among the various issues
considered, the structure of the ground state of a ring condensate (within a two-AM-mode
approximation of the bosonic quantum field) has been studied. As to the closely related
two-well boson model, the same problem has been investigated in [16] within the Hermitian
phase operator method. In order to obtain a satisfactory description of the system ground
state as well as of the weakly excited states for the two-mode model, we implement, in the
present paper, an algebraic approach based on the Inönü–Wigner contraction method [17].
This method allows one to simplify the algebraic structure of the Hamiltonian reducing the
latter in a form apt to perform a completely analytic derivation of its spectrum. A well-defined
limiting procedure, mapping the original Hamiltonian generating algebra to a simpler algebra,
often succeeds in reducing the nonlinear terms to a tractable form. These terms, originated by
the boson–boson interaction and thus occurring in any model inherent in BEC dynamics, are
known to make the Hamiltonian diagonalization a hard task. Such a technique and the effect
of simplifying the algebraic structure of model Hamiltonians, has found a wide application in
many fields of theoretical physics. It is well illustrated, for example, in [18] where it is applied
to study collective phenomena in nuclear models.

The contraction-method approach (CMA)—namely the contraction procedure and the
ensuing approximation of weakly excited states—works well for the spectrum sectors where
the energy levels are close to the minima and the maxima of the classical Hamiltonian and
thus seems suitable for studying the low-energy regime of two-mode nonlinear models. The
results obtained within the CMA in sections 2 and 3 will be compared both with the exact
spectrum calculated numerically and with an alternative approach based on the coherent-state
semiclassical approximation (CSSA) reviewed in section 4.

We consider N interacting bosons with mass m whose boson–boson interaction can
be either attractive or repulsive. These are confined in a narrow annulus whose thickness
2r is much smaller than the annulus radius R. Bosons are also acted upon by an external
potential which causes inter-mode tunnelling. Particularly, the rotating fluid with an attractive
interaction can be shown to be equivalent to the two-well model of repulsive bosons introduced
previously. In the coordinate frame of the potential rotating with angular velocity ω and with the
z-axis parallel to the total angular momentum Ltot = Lz, the bosonic-field Hamiltonian reads

Ĥbf =
∫

d3rψ̂+
r

[
P 2

2m
− ωLz + Vext(r)

]
ψ̂r +

1

2

∫ ∫
d3r d3sψ̂+

r ψ̂+
s U(|r − s|)ψ̂sψ̂r

where ψ̂r = ψ̂(r)
(
ψ̂+

r

)
is the destruction (creation) boson field operator at r. Vext is the

confining potential. At a low temperature, the interaction between dilute bosons is well
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represented by the Fermi contact interaction which entails the standard approximation
U(|r − s|) � (4πh̄2a/m)δ(|r − s|), where a is the s-wave scattering length [2].

1.1. Two-mode approximation

The two-mode approximation involves only the first two states of AM, with eigenvalue
equations Lzψ0(r) = 0 and Lzψ1(r) = h̄ψ1(r). Field operator ψ̂(r) in the two-mode basis of
Lz is thus written as ψ̂(r) � a0ψ0(r) + a1ψ1(r), where a0, a1 are bosonic operators and the
validity of the two-mode approximation requires the condition 0 < ω < 2ωc (greater angular
velocities would involve other angular-momentum states). Within such an approximation
[6, 9] and considering a thin torus (r � R) Ĥbf reduces to [2] H = g

(
n2

0 + n2
1 −

n0 − n1 + 4n0n1
)
/2 − �h̄n1/2 − V0

(
a+

1 a0 + a+
0 a1

)
, where ni = a+

i ai,� = 2h̄(ω − ωc),
while ωc = h̄/(2mR2), g = 2h̄2a/(mRπr2) and V0 are the critical angular frequency, the
mean interaction energy per particle and the asymmetry of potential Vext = V0(eiθ + eiθ ),
respectively. In the Schwinger picture [7] of algebra su(2) H further simplifies becoming, up
to a constant term,

H = −gJ 2
3 − 2V0J1 − �J3, (1)

where J3 = (n1 − n0)/2, J1 = (J+ + J−)/2, J2 = (J+ − J−)/2i and J+ = a+
1 a0, J− = (J+)

+.
Such generators satisfy the commutators [Jr, Js] = iεrsvJv (εrsv is the antisymmetric symbol)
and commute with the total boson number operator n1 + n0

(
ni = a+

i ai

)
whose eigenvalue N

is connected with the su(2)-representation index J by J = 2N . In such a scheme, the AM
states are defined by

|J ;m〉 := |n0〉 ⊗ |n1〉, n1 = J + m, n0 = J − m,

where the J3-basis states satisfy the eigenvalue equations J3|J ;m〉 = m|J ;m〉 and J4|J ;m〉 =
J |J ;m〉, the index J being the eigenvalue of J4 = (n1 + n0)/2. The positive (negative) sign
of g in model (1) implies that the effective interaction between bosons is repulsive (attractive).
The conditions of weak asymmetry and interaction ensuring the validity of the model [2] are
given by |V0| � h̄ωc and |g| � h̄ωc. The simple spin form of Hamiltonian (1) evidences how
the attractive model (g < 0) coincides with a (repulsive) two-site Bose–Hubbard Hamiltonian
[7, 11] modelling two potential wells of different depth that share N = 2J bosons and exchange
them via tunnel effect. The N-boson physical states can be written as |ψ〉 = ∑J

m=−J Xm|J ;m〉,
while the Schrödinger equation (ih̄∂t − H)|ψ〉 = 0 can be expressed in components as

ih̄Ẋm = (−gm2 − m�)Xm − V0
[
RJ

m+1Xm+1 + RJ
mXm−1

]
,

once the symbol RJ
m = [(J +m)(J −m+1)]1/2 has been defined. It is worth noting that the study

of the algebraic structure characterizing the second-quantized Hamiltonian for a condensate
trapped in two potential wells has received much attention in the literature. In the seminal
work [14] and in [15], in particular, such Hamiltonian has been shown to reduce, within a
standard mean-field approach, to the sum of mode Hamiltonians describing the momentum
conservation in the presence of inter-well boson exchange due to the tunnelling. Each mode
Hamiltonian is written in terms of operators ak, a−k (±k are the momentum modes) and can
be reformulated as a linear combination of su(1,1) generators. In model (1) the momentum
conservation is explicitly violated since one of the modes takes into account the fluid rotation.
This fact entails that the previous Schwinger realization of algebra su(2), rather than the
algebra su(1,1) connected with the momentum conservation, characterizes the system.
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In our analysis the dimensionless mean value per boson of the angular momentum
〈lz〉 = 〈Lz〉/h̄N (where the notation 〈A〉 = 〈ψ |A|ψ〉 has been introduced) represents an
important quantity. The angular momentum, in fact, expressed as

〈lz〉 =
J∑

m=−J

J + m

2J
|Xm|2 =

(
1

2
+

〈J3〉
2J

)
, (2)

relates the macroscopic behaviour of the rotating condensate to the minimum-energy state
properties through the ground-state components Xm. In what follows, we consider the spectral
properties of model (1) both in the attractive case (g < 0)

Ha = |g|J 2
3 − 2V0J1 − �J3, (3)

and in the repulsive case (g > 0)

Hr = −(|g|J 2
3 + 2V0J1 + �J3

)
. (4)

It is worth noting that the study of the ground-state properties of the repulsive case is closely
related to the study of the maximum-energy state for the attractive Hamiltonian. In fact,
after the substitutions V0 → −V0 and � → −�, the repulsive Hamiltonian is identical
to the attractive one up to a factor (−1). Since these two changes can be effected in a
unitary way by means of transformations e+iπJ3J1 e−iπJ3 = −J1 and e+iπJ1J3 e−iπJ1 = −J3,
respectively, the spectra of Hr and Ha turn out to satisfy the equation spect[Ha(V0,�)] =
−spect[Hr(−V0,−�)]. Concerning the parameter � of Hamiltonian (1), we note that the
constraint 0 � ω � 2ωc implies the inequality −2h̄wc < � < 2h̄wc. The definition of
the further parameters γ = J |g|/2h̄wc, τ = V0/J |g| allows one to better characterize the
regimes of the rotational dynamics as well as the conditions of validity of the present model.
Parameter γ (representing the ratio of the self-interaction energy per particle to the single-
particle energy-level spacing) should satisfy the inequalities 2γ � J, τ � 1/2γ , owing to
the conditions |g| � h̄ωc and V0 � h̄ωc, respectively. Both these conditions can be satisfied
if J = N/2 is not excessively large [2]. Moreover, parameter τ = V0/(J |g|) allows one to
distinguish, in both the attractive and repulsive case, three regimes:

• the Fock regime, where |g| � V0J entails τ � 1/J 2;
• the Josephson regime, where V0/J � |g| � V0J entails 1/J 2 � τ � 1;
• the Rabi regime, where |g| � V0/J entails τ � 1.

We note that the condition of weak asymmetry |V0| � h̄ωc given by τ � 1/2γ appears to be
compatible with the first two regimes and with part of the Rabi regime.

2. The Inönü–Wigner contraction in the attractive case

We introduce a simple algebraic approach for studying the low-energy spectrum of
Hamiltonians (3) and (4) for large J whose essence consists in simplifying the nonlinearity due
to the term J 2

3 . The Inönü–Wigner contraction [19] supplies a method for mapping some given
algebraic structure in a new one, as the result of a singular limiting process. The contraction
is realized by defining a set of new operators hi as linear combinations hi = σiI + �kcikgk

of the generators gk of a given algebra (identified by its commutators [gr, gs] = εrskgk) and
of the identity operator I. Selecting an appropriate parametrization cik(x) of the linear-map
coefficients, the contraction enacted by means of the limit x → 0 is able to generate the
new algebraic structure [hi, hj ] = eijkhk whose structure constants {eijk} differ from the
original ones {εrsk}. For the algebra su(2) the contraction of the algebra mapping is driven by
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x = 1/
√

J (with J → ∞) and generates, in this limit, the harmonic oscillator (namely the
Heisenberg–Weyl) algebra [20].

The classical study of attractive (g < 0) Hamiltonian Ha = |g|J 2
3 − 2V0J1 − �J3

developed in (appendix A) demonstrates (see formula (A.2)) how J1 � +J, J � |J2|, |J3| � 0,
at low energies. This suggests the correct way to implement the contraction scheme. In the
present attractive case we can build the following transformation,

h1 = J1 − I/x2, h2 = xJ2, h3 = xJ3, (5)

where J4 = JI . The Inönü–Wigner contraction is realized when such a x-dependent
transformation is considered in the (singular) limit J = 1/x2 → ∞. In this case the objects
{Ji} (with i = 1, 2, 3, 4), defining algebra u(2), transform into the new objects {hi, I } (with
i = 1, 2, 3) that satisfy the following commutation relations:

[h2, h3] = i(x2h1 + I ) → iI, [h1, h2] = x[J1, J2] = ih3, (6)

[h1, h3] = x[J1, J3] = −ih2, [hi, I ] = 0. (7)

In the limit x = 1/
√

J → 0, the latter reproduce the commutation relations of Weyl–
Heisenberg algebra: [q, p] = i, [n, q] = −ip, [n, p] = iq, n = (q2 + p2)/2, thereby
suggesting the identifications h1 ≡ −n, h2 ≡ −p, h3 ≡ q. By combining the latter with
definitions (5) we find that the contraction gives J1 → J − n, J2 → −√

Jp, J3 → √
Jq.

Correspondingly, Hamiltonian Ha becomes Ha = |g|Jq2 + 2V0n − 2V0J − �
√

Jq, which,
by defining � = [1 + 1/τ ]1/2 and Q = q − χ with χ = √

J�/2V0�
2, and τ = V0/J |g|,

reduces to the form

Ha = V0

[
p2 + �2Q2 − 2J − J�2

4V 2
0 �2

]
. (8)

Since p2 + �2Q2 = 2�(n + 1/2) is diagonalized by the harmonic-oscillator eigenstates
�n(Q) = 〈Q|En〉 = Nn e−�Q2/2Hn(

√
�Q), the eigenvalues of Hamiltonian (8) are found

to be

En = V0

[
2�(n + 1/2) − 2J − J�2

4�2V 2
0

]
. (9)

The corresponding eigenvalue equation Ha|En〉 = En|En〉 in the J3 basis, where
|En〉 = �mXn(m)|J,m〉, can be written as �m(Ha)�mXn(m) = EnXn(�) with (Ha)�m =
〈J, �|Ha|J,m〉. In the limit J � 1, equation J3|J,m〉 = m|J,m〉 is replaced by q|J,m〉 =
(m/

√
J )|J,m〉. Therefore the eigenvalue m/

√
J can be seen as a continuous variable which

naturally identifies with the variable q � J3/
√

J used within the approximation scheme
just discussed. The component version of the eigenvalue equation for Ha then reduces (see
[20] for details) to the equation Ha(Q,p)�n(Q) = En�n(Q) solved above. Components
Xm(En) thus appear to be given by Xm(En) = �n(Q) that entail the explicit expression for
the eigenstates

|En〉 = �mXm(En)|J ;m〉, Xm(En) = NnHn(
√

�Q) e−�Q2/2 (10)

with Q = m/
√

J − χ . The normalization constants Nn are determined through the condition
〈En|En〉 = 1 implying that

1 =
J∑

m=−J

X2
m(En) �

∫ ∞

−∞
dq

N2
n√
J

H 2
n [

√
�(q − χ)] e−�(q−χ)2

, (11)

where ±J has been replaced with ±∞. Such an approximation is acceptable until the condition

|χ | <
√

J −
√

2n/�, (12)
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evinced from the interval containing the Hermite-polynomial zeros, is fulfilled. Excluding the
case τ � 1, this condition is always valid provided n � J . Thus constants Nn are given by
Nn = [(J�)1/2/(π1/22nn!)]1/2.

Another important check concerns the possibility of considering m/
√

J as a continuous
variable. The characteristic scale is established by the Gaussian deviation

√
2/� which must

be compared with the smallest variation 1/
√

J of q. The resulting condition 1/
√

J <
√

2/�

can be written as

1 <
2J

�
= 2J

[
V0

V0 + J |g|
]1/2

= 2J
[ τ

τ + 1

]1/2
.

While in the Rabi and Josephson regimes (1/J 2 � τ) the latter is fully satisfied, in the Fock
regime, where τ � 1/J 2, such a condition is violated. We note that for τ � 1/J 2 (namely
|g| ≈ JV0) a unique component Xm appears to contribute to states |En〉 since the Gaussian
amplitude becomes very small. For example, in the case of the ground state one has

|E0〉 = �mN0 e− �
2 ( m√

J
−χ)2 |J,m〉 � N0 e− �

2 ( m∗√
J
−χ)2 |J,m∗〉, (13)

where m∗ is the integer closest to
√

Jχ � �/2|g|. Nevertheless, in the special case when
�/2|g| = m∗ + 1/2, the two states |J,m∗〉 and |J,m∗ + 1〉 equally contribute to |E0〉 which
is given by

|E0〉 � N0 e− �
8J (|J,m∗〉 + |J,m∗ + 1〉). (14)

To summarize, we note how the ground state |E0〉 is essentially formed by a unique component
corresponding to |J,m∗〉 in the whole parameter range m∗ − 1/2 < �/2|g| < m∗ + 1/2. The
resonance of the system between two equivalent states crops up whenever �/|g| assumes
integer values given by �/|g| ≡ 2m + 1 with −J � m � J . Such a condition can be
implemented by varying � with |g| = const thus leaving � unchanged.

2.1. Comparison of different regimes

For τ > 1/J 2 (Rabi and Josephson regimes), one easily calculates the dimensionless mean AM
per boson 〈lz〉 based on state |E0〉, as given by formula (10), and exploiting the normalization
integral (11). Recalling that 〈J3〉 = ∑J

m=−J mX2
m(E0), one finds that

〈lz〉 = 1

2

(
1 +

〈J3〉
J

)
� 1

2
+

τ�

4V0(1 + τ)
, 〈J3〉 �

√
Jχ = Jτ�

2V0(1 + τ)
, (15)

where 〈J3〉 matches exactly formula (A.3) obtained in the classical study of the attractive
model. This result cannot be used in the Fock regime where the ground state has, at
most, either one or two dominating components. In the other two regimes, the second of
equations (15) entails the further consistence condition

−1 � 〈J3〉/J = τ�/[2V0(1 + τ)] � +1, (16)

which has to be verified in each regime. In view of the condition |〈J3〉| � J required to
implement the contraction procedure, formula (16) should be imposed in the stronger version
|τ�/[2V0(1 + τ)]| � 1. However, the numerical (exact) determination of the ground state for
various choices of parameters reveals that our approximate procedure works well also in the
case when |τ�/[2V0(1 + τ)]| is not particularly small.

Fock regime. The main feature of this case (τ � 1/J 2) is that the mean dimensionless AM
per boson is a step function of � (as to this well-known effect see, e.g., [3]). If one simplifies
the form of states (13) and (14) by setting |E0〉 = |J,m〉 and |E0〉 = (|J,m〉 + |J,m + 1〉)/√2
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in correspondence to the appropriate values of �, the dimensionless mean AM per boson is
found to be

〈lz〉 = 1

2
+

m

2J
, 〈lz〉 = 1

2
+

m

2J
± 1

4J
,

for m − 1/2 < �/2|g| < m + 1/2 and �/2|g| = m ± 1/2, respectively, corresponding to the
two choices of the Fock ground state |E0〉. This illustrates the AM step character (related to
the Hess–Fairbank effect) as well as its ‘singular’ behaviour when �/2|g| = m ± 1/2. Note
that considering the simplified form for |E0〉 is equivalent to assuming the net predominance
of one or two components. The results just found are consistent with the limit τ → 0, where
Ha = |g|J 2

3 − �J3 can be diagonalized in a direct way.

Josephson and Rabi regimes. In these cases 1/J 2 � τ � 1 and 1 � τ , respectively. Based on
the above formulae, one finds that 〈J3〉 � Jτ�/2V0 (the Josephson case) and 〈J3〉 � J�/2V0

(the Rabi case) giving the mean dimensionless AM per boson

〈lz〉 = 1

2

[
1 +

τ�

2V0

]
, 〈lz〉 = 1

2

[
1 +

�

2V0

]
,

respectively. Owing to formulae (15) and (16), in the Josephson case, the range of
parameter � is [−2J |g|,� 2J |g|]. For this regime, the further condition (12) reduces to
(2nτ 1/2/J )1/2 + (�/2J |g|) < 1. In the Rabi case, condition (16) on 〈J3〉 entails that �

ranges in [−2Jτ |g|, 2Jτ |g|] (2Jτ |g| = 2V0) which is, in principle, much larger than the
range allowed in the Josephson case. Considering once more condition (12) gives in the Rabi
case (2nτ 1/2/J )1/2 + (�/2V0) < 1. One easily checks that weakly excited states |En〉 satisfy
the conditions on the restricted range of � provided n � J , and |�| � 2J |g|, |�| � 2V0

in the Josephson case and in the Rabi case, respectively. In both cases the latter inequalities
represent condition (16) in its stronger version.

3. The Inönü–Wigner contraction in the repulsive case

The classical study of repulsive Hamiltonian Hr = −(|g|J 2
3 + 2V0J1 + �J3

)
, discussed in

(appendix A), shows that, with τ = V0/J |g| > 1 (the Rabi regime), the energy minimum
is such that J1 = J, J2 = J3 = 0. As shown by equation (A.5), a generic state near
the minimum is such that J1 � J, |J2|, |J3| � J . In the Fock/Josephson regimes, where
τ = V0/J |g| < 1, Hamiltonian Hr displays two minimum-energy states (see equation (A.7))
entailing low-energy configurations characterized by J3 � ±J, |J2|, |J1| � J .

3.1. The repulsive regime with τ > 1

In the Rabi regime (τ > 1), the CMA valid for the attractive model can be implemented
again. Then assuming h1, h2, h3 as in formulae (5) the result of the contraction gives J1 →
J − n, J2 → −√

Jp and J3 → √
Jq, which reduce Hr to a quadratic form. By defining

Q = q − c, with c = √
J�/(2V0W

2), the final form of Ha is found to be

Ha = V0

[
p2 + W 2Q2 − 2J − J�2

4V 2
0 W 2

]
. (17)

Since the eigenvalues of p2 + W 2q2 are �n = 2W(n + 1/2), the spectrum of Hr is

En = V0

[
2W(n + 1/2) − 2J − J�2

4V 2
0 W 2

]
. (18)
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As in the attractive case, the eigenfunctions �n(Q) of Hamiltonian (17) allow one to determine
components Xm through the formula Xm(En) = �n(Q). The energy eigenstates turn out to
be

|En〉 = �mXm(En)|J ;m〉, Xm(En) = NnHn(
√

WQ) e− WQ2

2 , (19)

with Q = m/
√

J −c. This description is valid if the conditions on the Gaussian deviation and
the Hermite-polynomial zeros 1/

√
J <

√
2/W and |c| <

√
J −√

2n/W , respectively, which
can be rewritten as 1 < 2Jτ/(τ − 1) and |�|τ/[2V0(τ − 1)] < 1 −{2nτ 1/2/[J (τ − 1)1/2]}1/2,
are satisfied. For τ � 1, the first condition is fulfilled, while the second one gives
�/2V0 < 1 − √

2n/J . The latter is satisfied if �/2V0 < 1. Weakly excited states |En〉
with n > 0 can be also considered provided J � 2n. Under such conditions, the mean
dimensionless AM per boson is a linear function of �

〈lz〉 = 1

2
(1 + 〈J3〉/J ) = 1

2

[
1 +

�τ

2V0(τ − 1)

]
, 〈J3〉 = c

√
J = J�τ/2V0(τ − 1),

giving 〈lz〉 � (1 + �/2V0)/2 for τ � 1. Note that 〈J3〉 coincides with formula (A.6) for the
minimum of the classical repulsive model and that, in the Rabi regime, 〈lz〉 has the same form
both for attractive bosons (g < 0) and for repulsive bosons (g > 0).

3.2. The repulsive case with τ < 1

In this case, the classical ground-state configuration corresponds to two minima. The
contraction scheme can be implemented in two ways by assuming h2 = xJ2, h1 = xJ1

and h3 = J3 ∓ I/x2 which entails [h1, h2] = ±ix2h3, [h2, h3] = ih1, and [h3, h1] = ih1.
Note that h3 = J3 ∓ I/x2 allows us to describe the two classical minima by further selecting a
suitable definition for h3. The result of the contractions demonstrates the two possible choices

h3 = −n, h2 = J2/
√

J → p, h1 = J1/
√

J → q, (20)

and

h3 = +n, h2 = J2/
√

J → −p, h1 = J1/
√

J → q, (21)

that are naturally associated with the J3-positive and J3-negative minimum, respectively. The
repulsive Hamiltonian Hr = −(|g|J 2

3 + 2V0J1 + �J3
)

thus can be cast in the two (local) forms

Hr = −|g|
[
J 2 − 2Jn + 2τJ 3/2q +

s�

|g| (J − n)

]
, (22)

where s = ± recalls the presence of two minima. Note that Hr could be diagonalized by
means of the procedure used in the attractive case, provided one adopts the rotated basis
{|m〉1 = exp(−iπJ2/2)|m〉} of J1 and regards the q eigenvalues m/

√
J as a continuous index.

Unfortunately, while the evaluation of the energy eigenvalues is very easy in the ‘rotated’
J1 basis {|m〉1 = exp(−iπJ2/2)|m〉, |m| � J }, the eigenstates must be counter-rotated to
recover the J3-basis representation that we have adopted in the other cases/regimes. This
is a difficult problem in that recovering the eigenstates description in the J3 basis requires
that the transformation matrix element 〈m′| exp(−iπJ2/2)|m〉 is calculated explicitly and is
formulated in the limit where m/

√
J is a continuous index.

To skip this problem, we observe that, owing to formulae (20) and (21) derived by the
contraction procedure, J 2

3 +J 2
2 +J 2

1 = J (J +1) � J 2 can be rewritten as J 2
3 � 2Jn−J 2 while

J3 = ±(J − n). We thus obtain the linearized expression J 2
3 � −J 2 ± 2JJ3. Hamiltonian

(22) reduces to Hr = −|g|[−J 2 ± 2JJ3 + 2τJJ1 + (�/|g|)J3], whose digonalization is
rather simple owing to the linear dependence on su(2) generators. Rewriting the latter
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as H±
r = |g|[J 2 ∓ (2J ± δ)J3 − 2τJJ1] where δ = �/|g|, the unitary transformations

U± = exp(∓iJ2φ±) entail

H±
r = |g|[J 2 ∓ R±U±J3U

+
±
]
, (23)

with R± =
√

(2J ± δ)2 + 4τ 2J 2. The action of U± is given by

U−J3U
†
− = J3 cos φ−−J1 sin φ−, U+J3U

†
+ = J3 cos φ++J1 sin φ+, (24)

where angles φ± are defined by tgφ− = 2τJ/(2J − δ), tgφ+ = 2τJ/(2J + δ). The energy
spectrum is thus represented by the eigenstates and the eigenvalues∣∣E±

m

〉 = U±|m〉, E±
m = |g|[J 2 ∓ m

√
(2J ± δ)2 + 4τ 2J 2

]
, (25)

respectively. One should recall that, within the present approximation scheme, these
eigenvalues are significant for |m| ≈ J . Moreover, we note that U± → 1 for τ → 0 thus
reproducing the correct spectrum of the uncoupled model. The eigenvalues corresponding to
the energy minima are obtained by setting m = −J and m = +J for H−

r and H +
r , respectively,

and read

E±
M(δ) := E±

±J = |g|[J 2 − J
√

(2J ± δ)2 + 4τ 2
]
. (26)

The choice of the signs ±, and thus the recognition of the lowest energy states, is related to
the sign of δ. This is discussed below.

The states associated with eigenvalues (26) take the form of su(2) coherent states [21].
The standard su(2) picture of such states, also known as Bloch states, is given by

|−J , ξ 〉 = eξJ+−ξ∗J−|−J 〉 =
2J∑
s=0

CJsz
s |s − J 〉

(1 + |z|2)J (27)

with CJs = √
(2J )!/s!(2J − s)!, while the coherent-state labels z = |z| eiθ and ξ = |ξ | eiθ

are such that |z| = tg|ξ |, z ∈ C. Since the minimum-energy states have the form∣∣E±
M

〉 = e∓iJ2φ±|±J 〉, (28)

where ∓iJ2φ± = ∓(φ±/2)(J+ − J−), the link with the coherent-state picture is almost
immediate. Upon setting ξ = ∓φ±/2, the corresponding z reads z = ∓tg(φ±/2) =
∓2τJ/(2J ± δ). In view of this, eigenstate |E−

M〉 takes the new form

|E−
M〉 = cos2J (φ−/2)

2J∑
s=0

CJs tg
s(φ−/2)|s − J 〉. (29)

If δ < 0, state |E−
M(δ)〉 (we make explicit the dependence from δ to illustrate clearly the

difference between the absolute minimum and the local minimum) corresponds to the lowest
energy state with eigenvalue E−

M(δ) = |g|[J 2 −J
√

(2J + |δ|)2 + 4τ 2
]
, since E−

M(δ) < E+
M(δ)

(see equation (26)). The remaining state
∣∣E+

M(δ)
〉

represents the local minimum found in
the classical dynamics. In the opposite case δ > 0, the lowest energy state identifies with∣∣E+

M

〉
. This in fact corresponds to (see equation (26)) E+

M(δ) = |g|[J 2 − J
√

(2J + δ)2 + 4τ 2
]
,

which satisfies E+
M(δ) < E−

M(δ) for δ > 0. Note that E−
M(−|δ|) ≡ E+

M(δ). This feature is
important because it confirms the symmetry property e+iπJ1Hr(δ) e−iπJ1 = Hr(−δ) of repulsive
Hamiltonian Hr(δ) = −|g|(J 2

3 + 2JτJ1 + δJ3
)

stating that the spectra of the cases δ > 0 and
δ < 0 must coincide, the relevant Hamiltonians being related by a unitary transformation.
Based on this fact, we find as well

∣∣E+
M(δ)

〉 = e+iπJ1 |E−
M(−|δ|)〉. By acting with eiπJ1 on

|E−
G(−|δ|)〉 we get the expression∣∣E+

M(δ)
〉 = e−iJ2φ− e+iπJ1 |−J 〉 = eiJπ e−iJ2φ−|+J 〉 (30)
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(note that φ− = φ−(−|δ|)), where we have used the property of the J3-basis states
eiJ1π |m〉 = eiJπ |−m〉. Upon observing that φ−(−|δ|) = φ+(+|δ|) we conclude that the
unitary transformation reproduces, up to a phase factor, the diagonalization-process formula∣∣E+

M

〉 = e−iJ2φ+ |+J 〉 in a consistent way. Therefore, the ground state of the case δ > 0 is
obtained by calculating formula (30) explicitly, which gives

∣∣E+
M

〉 = cos2J (φ+/2)

2J∑
s=0

CJs tg
s(φ+/2)|J − s〉, (31)

where φ+(+|δ|) = φ−(−|δ|). We note that
∣∣E+

M

〉
corresponds to a coherent state |+J, ξ 〉 =

eξJ+−ξ∗J−|+J 〉 whose extremal state is |J 〉 (instead of |−J 〉) where |v| = tg|ξ | with
v = −tg(φ−/2) reproduces (31). As in the case δ < 0, the remaining state |E−

M(δ)〉
describes the quantum counterpart of the local minimum. The expectation value of J3 is
easily carried out. By using equations (24), one finds that

(〈Jk〉± = 〈
E±

M

∣∣Jk

∣∣E±
M

〉
, k = 1, 2, 3

)
〈J3〉± = 〈±J |(J3 cos φ± ∓ J1 sin φ±)|±J 〉, 〈J1〉± = J sin φ±, 〈J2〉± = 0, namely

〈J3〉± = ±J√
1 + µ2±

, 〈J1〉± = Jµ±√
1 + µ2±

, (32)

where µ± = 2τJ/(2J ± δ), which, expanded up to second order in τ , appear to be consistent
with the classical values (A.8) of the minimum-energy configurations. The choice + (−) for the
lowest energy state, corresponding to δ > 0 (δ < 0), entails 2J±δ = 2J +|δ| in µ±. Thus 〈J3〉+

and 〈J3〉− simply differ by a factor −1. In passing, we note that states
∣∣E±

M(δ)
〉

with the same
δ, should satisfy the condition

〈
E+

M

∣∣E−
M

〉 = 0 corresponding to different eigenvalues.
∣∣E±

M(δ)
〉

obtained within the CMA can be shown to be almost orthogonal1. Excited states labelled by
m = ±(n − J ) with n � J can be derived explicitly from formula (25). By expressing them
as

∣∣E±
m

〉 = U±J n
∓|±J 〉/(n!CJn), one obtains

∣∣E±
m

〉 = (
U±J1U

†
± ∓ iJ2

)n∣∣E±
±J

〉/
(n!CJn), with

U±J1U
†
± = cos(φ±)J1 ∓ sin(φ±)J3, which can be used to calculate the expectation values of

operators Jk, k = 1, 2, 3. The condition under which the eigenvalue that corresponds to the
local minimum represents the first excited state can be determined quite easily (e.g., for δ < 0)
from E+

M(δ) � E−
m(δ) with m = −J + 1.

Within Fock and Josephson regimes (τ < 1), the AM per boson is readily evaluated
from formula (32) giving 〈�z〉 = [

1 ± (2J ± δ)/
√

4τ 2J 2 + (2J ± δ)2
]/

2. If τ � 1, due
to φ± � 2τJ/(2J ± δ) and in view of equations (29) and (30), the ground state reduces
to

∣∣E∓
G

〉 � [1 − 2J (φ∓/2)2][|∓J 〉 +
√

J/2φ∓|∓J ± 1〉] where − and + are related to
the cases δ < 0 and δ > 0, respectively. Thus in the Fock regime (τ � 1/J 2) it is
natural to set φ± � 0. By neglecting also the first order corrections, the ground state is
approximated by |EG(δ)〉 = θ(δ)|J 〉+θ(−δ)|−J 〉 which, when inserted in formula (32), gives
〈�z〉 = θ(δ) = (1∓1)/2. This well matches the case τ = 0 where EG(±|δ|) = −(|g|J 2±J�)

with δ = �/|g|.

4. The coherent-state semiclassical approximation

An alternative way to approximate both the ground state and the corresponding energy is
to find the quantum counterpart of a classical configuration in terms of coherent states. If
the Hamiltonian algebra of a given model is known together with the coherent state relevant
to such an algebra, classical variables can be put in a one-to-one correspondence with the

1 An explicit calculation gives 〈E+
M |E−

M 〉 = [ν2/(1 + ν2)]J , with ν = tg[(φ+ + φ−)/2]. This term certainly vanishes
with ν2/(1 + ν2) < 1 and 2J = N � 1. Since ν2/(1 + |ν|2) � τ 2[2J 2/(4J 2 − δ2)] and τ < 1 then 〈E+

M |E−
M 〉 → 0

very rapidly due to the factor τ 2J .
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complex labels parametrizing a coherent state [21]. This is the case for Hamiltonians (3) and
(4) that are written in terms of su(2) generators J3, J±. Coherent states |−J , ξ 〉 of algebra
su(2) are defined by equation (27). The latter allows one to parametrize a coherent state by
z since ξ = |ξ | eiθ is related to z = |z| eiθ by |z| = tg|ξ |. For a generic |z〉 the expectation
values 〈Jk〉 = 〈z|Jk|z〉, k = ±, 3, given by

〈J3〉 = J (|z|2 − 1)/(|z|2 + 1), 〈J+〉 = 2Jz∗/(|z|2 + 1), (33)

with 〈J−〉 = 〈J+〉∗, allow one to determine z when 〈Jk〉 are known. Note that 〈J1〉 =
(〈J+〉+ 〈J−〉)/2 and 〈J2〉 = (〈J+〉− 〈J−〉)/2i. Therefore classical configurations characterized
by known values of J1, J2 and J3 can be associated with a specific z by identifying each classical
Jk with 〈Jk〉 and observing that, owing to equations (27), the phase θ of z coincides with the
phase of J+ = J1 + iJ2 while |z|2 = (J +J3)/(J −J3). Recalling that this assumption becomes
exact in the semiclassical limit J → ∞, we name the map J1, J2, J3 → z coherent-state
semiclassical approximation (CSSA). Determining Jk that characterize the classical energy
minimum thus provide the ground-state approximation |EM〉 � |z〉 where |z〉 is determined
by the previous semiclassical map. The corresponding energy is obtained by Esc

M = 〈z|H |z〉.

5. Conclusions

We have discussed the effectiveness of the CMA based on the Inönü–Wigner transformation
by comparing the ground state (GS) obtained in the various regimes of both the repulsive
and the attractive models with the exact lowest energy eigenstate determined numerically.
In the attractive case (g < 0), both for τ < 1 and for τ > 1, and in the repulsive case
(g > 0) for τ > 1 the CMA leads to approximate Xm of weakly excited states through the
eigenfunctions of equivalent harmonic-oscillator problems represented by formulae (10) and
(19), respectively. Due to the presence of two classical minima in model (4), the repulsive case
with τ < 1 requires that a different diagonalization scheme be developed after implementing
the CMA on Hamiltonian (4). This involves weakly excited states represented in terms of
su(2) coherent states (29) and (31).

In the attractive case, figure 1 shows that the exact components (calculated numerically)
are almost indistinguishable from components Xm obtained within the CMA and described
by formula (10). The cases N = 20 and N = 40 that correspond to τ = 0.02 > 1/J 2 = 0.01
and τ = 0.02 > 1/J 2 = 0.0025, respectively, describe the approach from above to the lower
bound of the Josephson regime. In the repulsive case, figure 2 allows one to compare the
exact components (calculated numerically) with components Xm obtained within the CMA
and described by formula (29) for τ = 0.6 (the Josephson regime), ν = 0.8 and N = 20, 40,
and by formula (19) for τ = 1.6 (the Rabi regime), ν = 0.8 and N = 20, 40. While in the first
case formula (29), representing a su(2) coherent state, provides a satisfactory approximation,
in the second case formula (19) exhibits a shift on the right of the highest weight components
Xm that, in addition, are smaller than the exact ones. In figure 2 (the right panel) Xm evaluated
within the CSSA better match the exact ones both qualitatively and quantitatively. When τ

is increased (see figure 3), the CMA approximation (CSSA) is satisfactory even if it tends to
underestimate (overestimate) exact Xm.

Figures 4 and 5 illustrate, through the parameter σ = (
Ee

M − E
ap

M

)/
�E, the deviation

of the GS energies obtained within the CMA or the CSSA from the GS energy calculated
numerically. Energies Ee

M,E
ap

M and �E are the exact GS energy, the approximated GS energy
and the energy range defined as �E = Ee

max − Ee
M , respectively. Ee

max is the exact maximum
energy. White, light grey and dark grey shades identify the regions in the τν plane where
σ < 0.001, 0.001 < σ < 0.01 and 0.01 < σ < 0.1, respectively. In figure 4, describing the
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Figure 1. In both panels, grey (dark) diamonds describe the ground-state components Xm, obtained
from formula (10), for N = 20 (N = 40) within the contraction-method approach (CMA). The
edges of the grey/dark piecewise-linear curves represent components Xm calculated numerically.
Left panel: the Josephson regime in the attractive case with τ = 0.02, ν = 0.8. CMA components
Xm and Xm calculated numerically are almost indistinguishable. Right panel: the attractive case
with τ = 1.0 (the transition point from the Josephson to Rabi regime) and ν = 0.8. No difference
is visible between CMA Xm and Xm calculated numerically.
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Figure 2. Both panels concern the repulsive case. Grey (dark) squares, diamonds, points and
(piecewise-linear, continuous, dotted or dashed) curves are relevant to N = 20 (N = 40).
Left panel: τ = 0.6 (the Josephson regime), ν = 0.8. Within the CMA, the ground-state
components Xm, given by formula (29) and described by squares, well approximate the Xm (edges
of the grey/dark piecewise-linear curves) calculated numerically. Right panel: τ = 1.6 (the Rabi
regime), ν = 0.8. Points (diamonds)—joined by dashed/dotted lines to better distinguish different
cases—describe ground-state Xm within the CMA (CSSA) referred to in formula (19) (formula
(33)). Continuous piecewise-linear curves represent Xm obtained numerically. The CSSA is
qualitatively better than the CMA approximation where curves are shifted on the right. Further
comments are given in section 5.

attractive case, Eap

M is given by formula (9). E
ap

M well approximates the exact GS energy in the
large (white) region in the τν plane. The repulsive case is considered in figure 5. In the left
panel, Eap

M given by formula (18) is shown to well approximate the exact GS energy in a rather
restricted region in the τν plane. In contrast, the right panel shows that evaluating E

ap

M based
on ground state (33) within the CSSA provides the best approximation (σ < 0.001) almost
everywhere. Concluding, except for the repulsive Josephson regime, where the CMA is not
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Figure 3. The repulsive case, τ = 2.4 (the Rabi regime), ν = 0.8. Grey (dark) diamonds,
points and piecewise-linear curves are relevant to N = 20 (N = 40). Diamonds (points)—joined
by dashed/dotted lines to better distinguish different cases—describe ground-state Xm given by
formula (19) (formula (33)) within the CMA (CSSA). Piecewise-linear curves have the usual
meaning. Both CSSA and CMA are satisfactory. Further comments are given in section 5.
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Figure 4. The attractive case. Comparison of the exact ground-state (GS) energy with the ground-
state energy (9) within CMA. Different shades in the τν plane are related to different values
of indicator σ . White regions are characterized by an excellent agreement of the exact and the
approximated GS energies. See section 5 for details.

satisfactory, both the CMA and the CSSA provide a satisfactory approximation. The CMA is
particularly good in the attractive-boson case. Among the many applications to bosonic-well
systems currently studied, such approaches seem quite appropriate for studying the low-energy
spectrum of the three-well boson systems where the complexity of the energy-level structure
mirrors the dynamical instabilities of the chaotic three-well classical dynamics [22]. The
study of similar aspects in the three-AM-mode rotational fluid outlined in [3] is currently in
progress.
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Figure 5. The repulsive case. Comparison of the exact ground-state (GS) energy with approximate
GS energies. Different shades in the τν plane are related to different values of indicator σ .
White regions are characterized by an excellent agreement of the exact and the approximated GS
energies. Details are discussed in section 5. Left panel: σ for the GS energy (18) (τ > 1). Right
panel: σ for the GS energy within the CSSA (the expectation value of Hr for the GS relevant to
formula (33)).

Appendix A. Classical energy minima

The classical version of the attractive model (3) displays a dynamics characterized by four
(two) fixed points if 1 � τ (τ � 1). This can be seen by considering the relevant motion
equations

J̇ 1 = (� − 2|g|J3)J2, J̇ 3 = −2V0J2, J̇ 2 = 2(|g|J1 + V0)J3 − �J1, (A.1)

equipped with the motion constant J 2 = J 2
3 + J 2

2 + J 2
1 , which entail the fixed-point equations

J2 = 0, 2|g|J3J1 + 2V0J3 − �J1 = 0, with the constraint J 2 = J 2
3 + J 2

1 . Their exact
solution involves a fourth-order equation in J3, except for � = 0 when the possible solutions
are either J1 = −V0/|g| = −Jτ or J3 = 0. In the general case � �= 0, if 1 � τ and
J |g| > � > 0 (namely, for � sufficiently small), the searched solutions are such that either
J3 � ±J, J � |J1|, or

J1 � ±J, J � J3 > 0. (A.2)

This feature can be proved explicitly. Particularly, the second pair of solutions is obtained by
implementing the approximation J1 = s

√
J 2 − J 2

3 � sJ
(
1 − J 2

3

/
2J 2

)
, s = ±1. Neglecting

the third-order terms in J3/J , the second fixed-point equation becomes (�/2J )J 2
3 + 2J |g|(1 +

sτ )J3 − J� = 0, whose roots are found to be J3 = 2Jσ−1
s

[−1 ±
√

1 + σ 2
s

/
2
]

with
σs = �/[J |g|(1 + sτ )]. While the negative root must be discarded because it entails |J3| > J ,
the positive root—this can be shown to describe both a minimum (s = +1) and a saddle point
(s = −1)—can be approximated as

J3 � Jτ�

2V0(1 + sτ )
, (A.3)

if δ = �/|g| < J . When τ > 1 (and thus for τ � 1) the choices s = −1, +1 are related
to a maximum and a minimum, respectively. Note that the previous formula giving the J3

coordinate is well defined for the minimum (s = +1) also when τ � 1.
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Let us consider now the (classical) repulsive model (4). The corresponding Hamiltonian
equations read

J̇ 1 = (� + 2|g|J3)J2, J̇ 3 = −2V0J2, J̇ 2 = 2(V0 − |g|J1)J3 − �J1, (A.4)

and exhibit once more the motion constant J 2 = J 2
1 + +J 2

2 + J 2
3 . For � = 0 and τ > 1, the

energy minimum is easily shown to correspond to J1 = J, J2 = J3 = 0. Thus a generic state
near the minimum is such that

J1 � J, |J2|, |J3| � J. (A.5)

If � �= 0, provided �/J |g| is sufficiently small, this statement is certainly valid for
1 � τ = V0/J |g| (the Rabi regime). In fact, by setting J1 =

√
J 2 − J 2

3 � J
(
1−J 2

3

/
2J 2

)
and

neglecting the third-order terms in J3/J in the fixed-point equation 0 = 2(V0−|g|J1)J3−�J1,
one finds that (δ/2J )J 2

3 + 2J (τ − 1)J3 − δJ = 0, whose roots are found to be J3 =
2Jα−1

[−1 ±
√

1 + α2/2
]
, with α = �/[J |g|(τ − 1)]. Discarding the negative root which

entails |J3| > J , the positive root can be approximated as

J3 � �

2|g|(τ − 1)
= Jτ�

2V0(τ − 1)
, (A.6)

if �/J |g| � τ − 1. In the Rabi regime where 1 � τ � τ − 1 such a condition
reduces to � � V0. In the Fock/Josephson regimes, where τ < 1, the two configurations
J1 = τJ, J3 = ±J

√
1 − τ 2 are found to minimize the energy if � = 0. This suggests that,

even with � �= 0, low-energy states are such that

J3 � ±J, |J2|, |J1| � J. (A.7)

To obtain the energy-minimum configurations, in addition to J2 = 0, we consider the second
fixed-point equation under the approximation J3 = s

√
J 2 − J 2

1 � sJ
(
1 − J 2

1

/
2J 2

)
with

s = ±1. Neglecting the third-order terms in J1/J , the latter entails 0 = (V0/J )J 2
1 + (2|g|J −

s�)J1 − 2V0J , which supply, with s = +1, two minimum-energy configurations (δ = �/|g|)

J1 � τJ

1 + sδ/2J
, J3 = sJ

√
1 − (J1/J )2 � sJ

[
1 − 2J 2τ 2

(2J + sδ)2

]
. (A.8)

These reproduce correctly the formula of the case � = 0.
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